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INTEGRAL EQUATIONS FOR
INHOMOGENEQUS MAGNETOPLASMA WAVES

*
Paul Diament

Institute for Plasma Research
Stanford University
Stanford, California

ABSTRACT

The problem of wave dispersion and stability for a class of hot,
inhomogeneous, collisionless magnetoplasmas is reduced to the solution
of an integral equation with well-behaved kernel. Admissible config-
urations include those for which the externally applied and internal
ambipolar fields form a generalized‘harmonic oscillator. The full set
of Maxwell's equations is used to arrive at self-consistent pertur-
bation fields in terms of the equilibrium particle distributions., An
illustrative example treats a magnetoplasma column with Gaussian
radial profile and Maxwellian velocity distribution in a state of quasi-

equilibrium.

*
On leave from the Department of Electrical Engineering, Columbia
University, New York, 1966-67.

- ii -



II.

III.

Iv.

VI.

VII.

CONTENTS

ABSTRACT. . . & ¢ v v v v 4t 4 o o o o o o o o o v s
INTRODUCTION. © & ¢ v v v 4 4 4 o o o o o o o o o o
OUTLINE OF METHOD . . . . . . & v v v 4 o & o v o «

EVOLUTION OF INITIAL STATE. . . . . v v & v o o « . .

INVERSE PHASE SPACE SPECTRA . . . + v v v 4 o 4« o« & .

SELF-CONSISTENT FIELDS. . . . . . + 4 & & v & v o o

GAUSSIAN-MAXWELLIAN COLUMN. . . . . . v . & « . . .

CORCLUSIONS - v v v v v o @w @ a5 5 6 3 B G E&ER . &

APPENDIX - Transverse Oscillations of Magnetoplasma
Columni o & v v v v 4 4 v 4 s 4o v o e

REFERENCES. . . . . ¢« ¢ v v v v v v o o v v o v v 0

FIG. 1 - Comparison of calculation of response to
perturbations in (¢,t), (6,t), and (6,s) spaces.

FIG. 2 - Evolution of self-consistent equations for
spectrum and field perturbations.. . . . . . . .

FIG. 3 - The Gaussian-Maxwellian magnetoplasma colurin

- iii -

11

14

19

32

35

39

40

41

42




I. INTRODUCTION

The propagation and evolution of small disturbances in a hot,
nagnetized, inhomogeneous plasma is a matter of considerable thecoret-
ical and practical interest with regard to both the wave supporting
capabilities of the medium and its stability against small perturbations.
Although the procedure leading to descriptions and predictions of the
response of the plasma to small signals can be formulated quite explic-
itly, the problem has long resisted definitive analysis, by virtue of
what appears to be an intrinsic incompatibility with the ideal conditions
under which standard analyses and perturbation techniques are effcctive.
The major complicating features are the nonlinearity of the system
dynamics and the inhomogeneity of the medium, which magkes the system
sensitive, via particle transport, to global as well as local conditions.

The general analysis procedure can be decomposed into a number of
distinct subproblems, cach of which isolates a particular featurec of
the system, such as inhomogencity, nonlinearity, anisotropy, statistical
distribution, electromagnetic interaction., These may be dealt with
individually at first, then combined in a self-consistent manner. The
concatenation of the subproblems links the tractability of one quite
strongly to that of the preceding one, with the result that the
complexity of the mathematical description forces recourse to numerical
analysis at a very early stage of the calculation., It soon becomes
hopeless to direct and interpret a realistic computation meaningfully.

It is the purpose of this paper to present an approach to the problem
which can bc pushed analytically nearly to completion, leaving to
digital computers only some relatively straightforward quadratures.

The system dealt with is, in the general formulation, a collection
of charged particles of two species, inhomogeneously distributed in
space, with arbitrary velocity distributions, immersed in a uniform
and constant applied magnetic field, in the absence of collisions,

The evolution of arbitrary weak disturbances of an equilibrium state

is sought, for the determination of stability and wave dispersion. The

=S



problem ic three-dimensional and is treated nonrelativistically, but
with the ful: set of Maxwell's equations and retaining the r.f. magnetic
field interactiun. A particular class of plasma conlfigurations is

considered, whose realizability is discussed and Justified on physical

grounds.
Experiments on inhomogeneous magnetoplasmas were reported and
interpreted by Buchsbaum and HasegaWaSl’z) They obtained a lourth-

order differential equation for the potential, without accounting for

(3,

the ambipolar fields. Pearson extended their treatment by allowing

for anisotropic velocity distributions and ambipolar fields. Baldwin(s)
considers wave propagation in inhomogencous magnetoplasmas in the low
temperature limit, with no resonant particle effects. Analyses such
as these inherently lack generality, being based on various approxi-
mations which effectively remove the nonlocal nature of the interactions,
or require low temperature or only slight inhomogeneity, or rely on
quasistatic conditions. They can be quite successful in interpreting
experiments that conform to the specialized assumed conditions, although
the results mny often be valid in only highly restricted ranges of the
parameters, such as near the second cyclotron harmonic. Due recognition
of nonlocal interactions was given by Buneman(ﬁ)in his analysis of the
Bennett pinch. This leads to an jutegril equation, rather than differ-
ential equations, but one of a rather intractable character, due to the
complexity of the particle orbits and to the effects of particle motions

in resonance with the disturbances. The present work deals with a class

of systems describable by tractable integral equations.



11. OUTLINE OF METHOD

Starting with a specified particle distribution function foﬁin!’ J
for each species, at time t = 0 , the problem may be stated as that
of determining its subsequeni time development, f(ﬁx!vt) , since this
function provides statistical information as to the state of the system.
'The particles so described are subjected to forces due to the applied
magnetic field, the space charge forces of the ambipolar electric field,
the self magnetic field due to unbalanced currents, and to small-signal
electromagnetic fields accompanying a-weak disturbance, either applied
externally or self-generated. Collisions are excluded from consideration
in this paper.

The evolution of the initial distribution function is implicit in
the Boltzmann equation, which states that the density in phase space
remains constant along the particle trajectories, in the absence of
collisions. Regardless of how the equation is formulated, its solution
entails the determination of the particle orbits, under the action of
all the forces. The distribution at time t is determined by evaluating

the initial one at that point in phase space, , where a

(50,10)
particle arriving at x with velocity v at time ’E originated at
t =0 . Since the forces other than the applied ones are themselves
determined from sources obtained by suitable averaging over the distri-
bution, the overall problem is nonlinear. This stage of the analysis
is hence to be carried out implicitly to obtain expressions for the
particle orbits, particularly the initial phase points, as functionals
of unknown force fields, to be found subsequently from the functional
form of the distribution. Clearly, it is essential to arrive at a
fairly explicit form of the particle trajectories in order to permit
the requisite processing of the qistribution function to extract the
unknown fie'ds consistently.

Two intermediate steps are involved before the closing of the set
of equations through the extraction of self-consistent fields. First,
the distribution fgzhx,t) , as yet found only implicitly in terms of



unknown force fields, is to be suitably weighted and averaged to obtain
the electric charge and current distributions, still in terms of the
clectromagnetic fields of which they are the sources. This step
represents the determination of the constitutive parameters of the
medium,  The next step 1s the solution of Maxwell’s equations, with

these charges and currents as sources, to obtain the fields which exert
the originally assumed forces. The condition of self-consistency then
cxpresses the dispersion relation for the medium, including the stability
ol the unperturbed state.

The anisotropy of the magnetoplasma results in the tensor character
of the constitulive parameters, so that the entire analysis is best
dealt with by matrix calculus. This minor complication is overshadowed
by the further one that, in the inhomogeneous medium, the constitutive
parameters are not expressible simply as permittivity or conductivity
tensors but, more generally, as integral operators expressing the non-
local nature of the medium's sensitivity to disturbances. This is a
direct result of the transport of particles along orbits that span
regions of varying properties, with different responses to perturbations.
This global sensitivity ultimately leads to an integral equation for
the scelf-consistent fields.

It is clear then that for this program not to be frustrated from
the start, it is essential that the particle transport be expressible
analytically, and in relatively simple form, rather than merely
numerically. This is virtually impossible to achieve in a completely
sclf-consistent manner, however, for the particle trajectories are
generally highly complicated solutions to nonlinear differential
cquations. In particular, the orbits in the inhomogeneous magnetoplasma
are not simply helical, because of the action of the ambipolar electric
field. Thus, the description of even the equilibrium state is a
difficult task in fully realistic situations.

The key to thc analysis to follow is the construction of a plasma
configuration which is characterizea by simply expressed unperturbed

particle orbits. The class of orbits to be admitted includes those



which solve generalized harmonic oscillator equations, Although the
associated configurations are found in the general inhomogcneous, two-
species case not to be strictly self-consistent and time-invariant, it
will be shown that, by proper choice of the parameters, the initial
state can be made to persist for relatively long periods of time, 1if
not indefinitely. The effects which ultimately unravel the quasi-
equilibrium unperturbed state can be made second order and act on a
relatively long time scale. Since the restriction to collision-free
systems has already limited the time duration of validity of the
analysis, there is no inconsistency in investigating the short-term
stability of a slowly varying unperturbed state.

Even with simple analytic expressions for the particle orbits, the
standard approach based on the distribution function would lead
ultimately to an integral enuation whose kernel exhibits certain
singuiarities. These arc associated with particles whose orbits are
in resor.ance with the propagating disturbances and are essential to the
stability problem in that thcy lead to collisionless damping or growth
phenorena. The standard procedure for dealing with the singularities,
as formulated by Landau,(7) involves complex contour integrations that
arc inimical to convenient numerical analysis.

To avoid the appecarance of singular kernels, the method to be used
describes the system in terms of its "invcrse phase space spectrum,"
i.e. through the Fourier transform of the particle distribution function.
This has a number of additional advantages, in that it is an algcbrai-
cally simpler description which virtually eliminates the two intermediate
steps of the program outlined above. The extraction of the sources of
the perturbation fi:lds involves simply evaluation or differentiation
of the spectrum, rather than integration of the distribution over
velocity, In addition, the transform formulation makes the solution
of Maxwell's equations merely a matter of algebraic manipulation. As
a result, the procedure can be carried forth analytically to a final
integral equation with nonsingular kernel, which may be solved

nunerically in a stralghtforward manner.




As an illustration of the method, the integral equation expressing
the dispersion relation of the medium is obtained for a plasma with a
Maxwellian distribution in velocity and a Gaussian distribution in

space.



III. EVOLUTION OF INITIAL STATE

For compactness of notation in the initial manipulations, phase
space will be considered as that spanned by the six-vector ¢ ,
comprised of the two position vectors in configuration and velocity
space, X,V . The first task is the determination of the particle
distribution function f(¢,t) , given the initial one, £(9,0) = fo(¢)

In the absence of collisions, the Boltzmann equation prescribes
that

6 6
f(¢,t) d ¢ = fo(ﬁo) d¢, » (1)

where ¢° ijs the initial ptase print of a particle whose phase point
i1s ¢ at time t . This expresses particle conservation, or continuity
in phase space along the particle trijectories.

Consider any system for which the zero-order orbit equation is
linear in the phase; i.e. has ‘he form of a generalized harmonic oscil-

lator equation:
dg/dt = Y ¢(t) . (2)

It is asFrumed here that the 6 X 6 matrix Y is constant. determined
by both the externally applied force field and the internal space charge
field: associated with the inhomogencous distribution. It will be
shown later that this assumption is exact for a homogeneous magneto-
plasma and very nearly exact for an i‘;homogeneous one.

Under the action of the perturbation, the orbit equation includes
an anharmonic term, due to the additional acceleration bu:.lt into the

six-vector us(¢.t) . The trajectory is then specified by the




dynamic equation,
dg(\)/dh = Y @A) + a (a(M),M), #(t) = ¢, (3)

in which the "initial" condition directs the orbit to the phase point
¢ at time t ., What is required in (1) is the initial phase ¢o = ¢(0).
An equivalent integral equation for the orbit is

t
s = o YN _f YT (an ) ar (4)
A

and the initial phase is given 1n terms of its solution @(A) by

(o]

t
¢ = e-Yt o - f e-YTa6(¢(T),T) dr . (5)
o

Specializing these exact, general equations to the case of weak
perturbations of the harmonic orbits, the initial phase ¢o = ¢o(¢,t)
is given to first order in the perturbation a6(¢,t) by

(o]

= t ya K
3 =8 Yt[¢ = / e agle gt a . (6)
(o]

The assumption of a harmonic system has led to a simple, explicit
expression for the initial phase point of the perturbed orbits for any
wesk disturbance.

To complete the determination of the time development of the
initial distribution, there remains to relate the initial and final
elements of phase space, d6¢o and d6¢ . The relation is given by



the Jacobian of the transformation:
6 6
g = |det a¢o/a¢| de . (7

But the acceleration affecting the particles is quite generally solenoidal
in velocity, with the consequence that the force fields are such that
Tr Y = 0 and (a/a¢)-a6(¢,t) =0 , at least in the ahsence of colli-
sions. As a result, (6) leads, at least to first order, to
det (3¢ O/a¢) =1 , so that d6¢° = d6¢ . The element of phase space
is invariant.
The time development of the initial distributior is thus expressed
to first order in the perturbation by

t
£(g,t) = fo<e'Yt [¢ = f eY"ae(e'Y%,t-x) dl]) . (8)

(o]

Assuming further that ihe initial distribution is an equilibrium
one in the unperturbed system adds the condition that, with ag = o ,
f(p,t) = fo(e-Yt¢) must be independent of t ; i.e.,

-Yt
£ (e ¢)=f°(¢) ; (9)

Since this is a condition on the functional form of the initial

distribution and holds for all ¢ , (8) is thereby simplified to

t
£(g,t) = f°<¢ = f eY"ae(e'Y%,t-x) dx) : (10)
o}

NI A PoTa



This explicit expression for the time development of an equilibrium
distribution under a perturbation a6(¢,t) states that the distribution
at phase ¢ at time t 1is given to first order by evaluating the

¥

equilibrium distribution f°(¢) at the slightlv displaced phase ¢-¢ ,

where
I L YR
o =¢ (¢,t) =f e a6(e o, t-1) di (11)
o

accumulates the perturbations suffered along the trajectory.

- 10 -



IV. INVERSE PHASE SPACE SPECTRA

Rather than proceeding to extract the velocity moments of the
distribution function by integration of (10) to obtain the electro-
magnetic sources, the entire system description will be relegated to
inverse phase space. This facilitates the extraction of velocity
moments, and thence the electromagnetic fields, and averts the appear-
ance of singularities corresponding to resonant particles.

Inverse phase space is spanned by the six-vector 8 y, composed of
the wave vector k and the inverse velocity vector A, . The inverse
phase space spectrum of the distribution is Just its six-dimensional

Fourier transform:
F(9,t) =/f(¢.t) e1°'¢d6¢ . (12)

The spectral description is algebraically simpler, replaces convolutions

by products and drifts by phase factors, and yields the velocity moments

of the distribution by merely evaluating the spectrum and its derivatives

(8)

at the origin in inverse velocity space. The distribution function
description is best dispenserd with entirely; the initial state of the
system is to be specified directl:s in inverse phase space, by Fo(e)

The evolution of the spectrum follows from that of the distribution

function. Since

-160-(¢ -¢)

: 6 6
£(p,t) =2 (9 - ¢") =fpo(eo) e a8 /(2m° , (13)

-11 -




expansion to first order in ¢' and Fourier transformation yields fox

the perturbed spectrum
‘a'rao 6 6
F(8,t) = FO(G) + 1/F°(9°)9° 6 (o Go,t) d 90/(2:1) ’ (14)

where 9'(9.t) is the Fourier transform of ¢'(¢,t) . From (11),
this is given by

t
8'(8,t) = f enﬁs(e"%,t-x) 1% u an (15)
[o]

which indicates that the relevant perturbation quantity is the acceleration

in inverse phase space, A6(9.t) , the Fourier transform of 36(¢,t) ;

Since d6¢ = de(e~Y)‘¢) , (183) 1is expressible as

A t
8 (8,0 =f eMae ™, ¢ -0 an (16)
o}

6 6 YA
and a similar change of variable, using d 90 =d (Boe ) and the
Yt
fact that the equilibrium condition, (9), translates into Fo(e) = Fo(ee ),

converts (14) into

t
6 6
e = = 0 = . 7
F (8,t) = 1 .[o fl"o(eA 90)(9A 6, Ae(eo.t A)d Oodk/(Zﬂ) (17)

- 12 -



Here, Fl(e,t) is the perturbation of the spectrum and

8. = ge't (18)

may be viewed as the orbit in inverse phase space.

With the perturbation of the spectrum now expressed as a convolation
in time, a final Laplace transformation is indicated, which will also
reduce Maxwell's equations to algebraic ones. Denoting the Laplace
transform operation by G(s) = L% g(t) , the convolution theorem yields

for the transformed spectrum perturbation,
. 6 6
Fl(e.s) = q.efvo(et-eo)(et-eo) AG(So.s)d 90/(2n) 2 (19)

This relation specifies the operations to be carried out on the equilib-
rium spectrum Fo(e) to obtain the system response to the perturbation.

Fig. 1 traces the methods of calculating the response of the system
to the perturbing fields, in the phase-time, irverse phase-time, and

inverse phase-frequency domains.

=18 -




V. SELF-CONSISTENT FIELDS

The acceleration associated with a perturbation consists of any
weak externally applied field, such as an impulse or a signal wave,
together with the reaction provided by the internal electromagneiic
fields: A6(9,s) = AeeXt(e,s) + Aeem(e,s) . In particular, the plasma
response to a weak impulse which imparts velocity xp uniformly to the

particles is obtainable by setting

0 0 a
ag(g,t) = v 6(t) A;(8,8) = v @2n)8(8) , (20

so that, from (19) and the equilibrium condition,

=

0
Yt Yt
Fi(8,) =1L F (8e ) B e v n Fle"'(e,s)
-1 0] e
= iF_(8) 8-(s - V) + F "o,s) . (21)
P

There remains to obtain the electromagnetic interaction.

Three steps are involved in expressing the internally generated
perturbation Flem(e,s) in terms of the total perturbation Fl(e,s) .
By virtue of the present transform formulation, each of these has been
reduced to algebraic manipulation. The first step is the extraction
of the field sources from the perturbed spectrum; Maxwell's equations
then yield the r.f. electromagnetic fields generated by these sources.
Finally, the internally generated acceleration is expressed in terms
of the perturbation through the Lorentz force. This closes the equations

self-consistently,

- 14 - /
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If the system includes N particles of mass m and charge (-e)
distributed in phase space as f(¢,t) , then with the normalization
FO(O) = 1 , the perturbation charge and current densities contributed

by that species are given by their Fourier-Laplace transforms as

pl("\‘-"S) = -e N Fl("““,o,S) ’ 51(5’5) = ie N o Fl(}é'o's)/ai\; . (22)

Note that particle conservation is expressed by

BFIQE,O,S)
)

k
= = Fl(h,O,s) . (23)

Maxwell's equations combine into a wave equation, which transforms

to

Fkx (kX =s - (e/m) s g (ke (24)

where o(k,s) = (-e/m) 5(5,5) is the transform of the acceleration
suffered by o particle subjected to only the r.f. electric field, and
’ngg,s) is the total current density due to all the species. Continuing
to consider only the contribution of the one species, (24) may be

expressed in terms of the perturbed spectrum by
2
Cc (}65 - k )'a = 8 g - 1(.00 S BFIQS,O.S)/BA » (25)

where wi = Nez/meo is the product of the average squared plasma

frequency and the volume containing the N particles. Together with

- 15 -




(23), this equation incorporates Gauss' law,

'5’9‘ = i(l)o F (5;0,5) ’ (26)

2
iwo 2 o)
g(}\c‘,s) =553 (c 5 + s ﬁ)Fl(}S’O’S) . (27)
s + kec ~

By Faraday's law, the transform of the acceleration due to the r.f.
magnetic field interaction is v X (%5 X Q? » 80 that the total Lorentz

acceleration is given in inverse phase space by

2 3
aglk, A8 =] | @0 | a6 +<

It should be remarked that this formulation neglects relativistic

ulix

k
Q- g'g)-a'(@] . (28)

corrections of order (v/c)2 but retains all terms of order (v/c)
Introducing AGQEO"AO’S) into (19) and integrating over 'Qo

leaves, after some manipulations,

em 3 3
F,%"(8,9) - 1£sf[Ft A, + G, X (go/s)] atk 9 dk /20’ , (29
where
Yt Yt
0, = (kh) = 0™ = (e S F, =R (kok A, (O

- 16 -



and

) (31)

The first and second terms in the integral in (29) represent the r.f.
electric and magnetic interactions, respectively, in the plasma. The
equation gives the spectrum perturbation accompanying the electric
field represented by AQQE,S) , while (27) yields the field associated
with the perturbation in the spectrum. In the absence of external
cxcitation, the cself-consictent fields are the solution of the homo-
geneous integral equation formed by combining (27) and (29),‘with
Flem N F1 . The impulse response is given by the solution of the
inhomogeneous integral equation obtained by combining (27), (29) and
(21). _

The primary objective of reducing the problem to the solution of a
nonsingular integral equation has thus been attained. The kernel of
the final integral equation is essentially the coefficient of 9..(.50'5)
in the Lntegral in (29); it is formed from the function FOQEuQ)
representing the equi;ibrium spectrum by explicit operations specified
in (30), $31), and (29). It is generally a well-behaved, nonsingular
kernel. The integral equation ostensiply determines the plasma frequency,
Wy as its eigenvalue. Since this is actually a specified parameter
of the system, however, the determination of the eigenvalue effectively
expresses the self-consistency condition, or the dispersion relation
restricting s and '5 . The fact that di is a real, positive
quantity imposes restrictions on the complex frequency S8 which then
stipulates the stability of the equilibrium state.

Summarizing the procedure for determining the stability, dispersion
relation, or impulse response of a collection of particles, the system
is first described by some inverse phase space spectrum Fo(e) , for

each species. The force fields, including those externally applied

- 17 -
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and the internal ones which maintain the distribution, are described in
terms of the accelerations produced and are assumed to compose a gener-
alized harmonic oscillator, specified by the constant 6 X 6 matrix Y
which validates (2). The restrictions on these initial specifications
are the solenoidal field condition implied by Tr Y = 0 and the equi-
librium condition expressed by Fo(eeYt) = Fo(e)

The vector ,go(e) =AX BFO/QQ determines the magnetic interaction
and essentially measures the anisotropy of the equilibrium velocity dis-
tribution. The orbit in inverse phase space, QEtﬂﬁt) = anﬁ)e:t : m;y
be evaluated by standard matrix methods; the relation e = l% (s-Y)
probably yields this most easily. Then the perturbation of the spectrum
is given in terms of the first-order electric field by (29), while the
latter is given in terms of the former by (27). The combination forms
an integral equation for lg(s,s) , whose eigenvalues determine the
dispersion relation among s,’5 , and the plasma frequency, Wy The
response to applied signals is obtained from an inhomogeneous integral
equation, formed as in (21) for the impulse response.

Fig. 2 depicts the processing of the given equilibrium spectrum
and acceleration matrix required to arrive at the equations relating
the spéctrum and field perturbations.

To account for perturbations of several species, the individual
fields of each may be superposed to form o . Any small deviations

from the harmonic oscillator equation, (2), may be treated as a further

perturbation, as in (3).

-
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VI. GAUSSIAN-MAXWELLIAN COLUMN

Before 'llustrating the method of setting up the integral equation
with an application to a particular inhomogeneous magnetoplasma, it may
te noted that for the homogeneous case, the integral equation is elim-
inated, reducing to an algebrajc relation. This reduction is made
possible physically by the fact that the particles then traverse only
regions which respond to perturbations just as does the one in the
immediate vicinity of the initial position, so that the global sensi-
tivity is reduced to a local interaction. Form:lly, a homogeneous

system is described by a spectrum of the form

F (0) = F (k1) = F() (20)° 610 (32)

o~~

whereupon (29) reduces to
em -Et
Fy o (8,8) = 4L |FCA) A otk ,8) + G(A) T2 x otk o) , (33)

where G(A) = A X dF/3\ . The self-consistent field equation is then
obtained by combining this with (27), algebraically.
A fairly realistic example of a warm, inhomogeneous magnetoplasma

is provided by one described by a Gaussian-Maxwellian spectrum:

1 q
FO(G) = exp (- 3 8RO . (34)

Here, R 1is a constant, symmetric 6 X 6 matrix, which partitions into

s 19 =




~—

four 3 X 3 submatrices as

R=| X* XV ' (35)

VX vv

incorporating the parameters that specify the mean spatial extent of
the plasma, its thermal velocity, and its drift motion. As a matter of
interest, for ease of visualization but superfluous to the calculation,

this spectrum corresponds to the particle distribution function

2 2
£ (D) = exp (- 3 R - @)/ (207 (det n (36)

which represents a collection of particles with a Gaussian spatial
distribution and a Maxwellian velocity distribution. The particle

drift is linear in position, ‘5(5) = va R;i‘g , and the temperature

2
is uniform, specified by the mean squared thermal velocity, T/m = ve :
2 1 -1
Ve = § Tr(va = va Rxx va) . (37)

These, and other velocity and spatial moments of the distribution, are
:vadily obtainable by differentiation of the spectrum and evaluation at
the origin of A- or k-space.

The equilibrium force field acting on the plasma is assumed to be
expressible by the constant 6 X 6 matrix, Y , relating d¢/dt to ¢,

forming a generalized harmonic oscillator. This partitions into four

- 20 - ‘



3 X 3 submatrices as

Y = . (38)

The submatrix va is to have zero trace to conserve the element of
phase space. It represents an acceleration linear in velocity, as is
the case for a magnetoplasma. Space charge fields are to be accounted
for through va » Which admits an acceleration linear in position,
representing a particular class of ambipolar fields.

The condition for the unperturbed distribution to be an equilibrium

state is here expressed by

FO(GeYt) = exp (- % ge't ReY t gy - F_(8) = exp (- % 8RO ,(39

i

where the prime denotes the transpose of the matrix. By inspection of
the quadratic form, it is readily seen that the equilibrium condition
reduces to the requirement that YR be antisymmetric.

Specializing to a uniaxially symmetric magnetoplasma column, uniform
in the axial direction but transversely Gaussian, reduces the 6 X 6
matrices to 4 X 4, eliminates the integration over the axial wave
number, and requires N to be redefined as the axial linear particle
density. A suitable combination of R and Y matrices that satisfy
all the conditions is specified for electrons by the 2 X 2 submatrices

2
R = a2 I, R =v_ I, R =R =0 ;
XX e vv e Xv vX
2 0 -1

=] = = 4 = . 40

va De I, va Dce XX 1 0 (40)
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The last of these ceffects the cross Product operation with the axial
magnetic field; Do is the electron cyclotron frequency. There is
thereby described a agnetoplasma column with Gaussian radial density
Profile of effective radius ae and Maxwellian velocity distribution
with thermal velocity ve - Equilibrium obtains when we = ve/ae H
this transit frequency corresponds to a time scale of the order of the
time it would take a thermal electron to traverse the effective radius
of the column.

Fig. 3 presents the essential characteristics of the Géussian-
Maxwellian magnetoplasma column here considered.

The configuration defined by (40) includes no particle drift but
implies an ambipolar field providing a radially inward acceleration
(-wz r) which maintains the Gaussiau profile. This field is to Le
pProvided by the interaction with the ion distribution. But this radtally
increasing ambipolar field which is to make the equilibrium configurstion
a harmonic oscillator strictly requires charges at infinity, or violates
overall neutrality. This system is hence not strictly realizable on a
permanent basis of macroscopic self—consistency. It is however possible
to maintain the desired conditions, including charge nheutrality, at
least temporarily, by an appropriate selection of the ion distribution,
as follows,

If the same number, N , of ions per unit length be distributed
with a Gaussian profile of effective radius ai slightly smaller than
ae y then the resulting ambipolar electric field would provide an

inward acceleration to the electrons, of magnitude

2
w 2 2
() lr lr
Zor [CXP (- 3 —§) exp ( 3 —5) : (41)
ae ai
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With the understanding that the system is being observed only
during that time interval in which it behaves as a harmonic oscillator
in equilibrium, the analysis proceeds by specializing the general result

to the spectrum

1 2 2 2 2
Fo(e) =exp - 3 (klae + A ve)2n G(k") 5 (43)

and to the orbit in inverse phase space given axially by

k,A) =(k,A +kt) |, 44
¢ t t)u . i ¥ [ e

corresponding to free particle motion along the magnetic field, and

transversely by

s -1

-1
(kA = L (i, 1) w: so x| (45)

which involves the magnetic and ambipolar fields. Since the velocity
distribution is here isotropic, ’QO(B) = 0 and there is no first-
order r.f. magnetic interaction. The spectrum perturbation is hence

given in terms of the perturbing acceleration ,QQE:S) by

: bLotles o e
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where x(}‘) is a Gaussian transform of g(lc‘) ]

a
_ _e 21 v 12 2 2
X(k,s) -_/.[21‘[ exp - 3 (.lf, lco) ae] g(lgo.k".S)d ko . (47)

The axial homogeneity gives the axial component k" the role of a
parameter. Note that in the fully homogeneous case, ae-° @ _\and
X = ack)

The integral equation for the self-consistent field g('l\{',s) is
now obtained by combining (46) with (27). Defining the plasma frequency
wp in terms of the axiul density by

2 2 2 2 2
wp = a)o/ZTrae = Ne /Znaemeo ’ (48)
yields the result
2 s 1 /\zv“ ]
U.)p 2 3 2 te
) = . = 0,
a(k,s) + '2+ 2.2 ck+s 3R L le ,(\¢ -Y-(l‘at’s) 0.(49)

A more explicit form of this integral equation is derivable by use of
the equilibrium condition, which here imposes

k a

&+ N
o N

2 2 2 2 2 2 2 22 2
242 . 50
+ Ve k a + A Ve + k"vet + 2/\"k vet . (50)
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Substitution in (49) reduces the integral equation to

2 - k2v21:2
a)p 2 e 2 3
L) + 533k e (° X7 VSt 2 3p
s+ ke ~
40
1 2 2, 2
3 (k.L - kt)ae
e A ‘x('l\c’t,s) =0 . (51)

An alternate form involving an exponential rather than a Gaussian kernel
follows from this by defining

B(k,s) = exp (- % k a:)‘g(‘ls,s) . (52)

The unknown is now the convolution of the electric field with the density

distribution and the integral equation becomes

2 -k2a2 _1 2v2t2
[V L e 2 | e 9 3 .
la ¥4 v £ i .
bik,8) + 3 732 © 'Ese (c_Evstk +sa—ﬂ)!~\'t
s + k ~
0
2 L]
/' ae-ls-t: Eﬂo dz(koac)
e E(Eo,s) T =0 |, (53)

Further insight into the properties of these integral equations
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sty

may be gainod by examining the explicit orbit in inverse phase space.

Developing (45) yields for the transverse motion complementing (44),

k, =k Z(t) + A
L

2
£ dz/dt , /\,cl = (-l/we)dktl/dt b (54)

L

where Z(t) 1is determined by a matrix partial fraction expansion of
(45) as

) -1
L Z(t) = ———— (s + w.X) + (s - 0,X) : (55)
S W, + w, 1 W)+ w, 2
or
) @)
72(t) = —2 -, tX —e tX) . 56
(t) oy + o exp ( ®, ) + oy + o exp (wb ) (56)

This combines two rotations, in opposite senses, at rates whose difference
is the cyclotron frequency and whose geometric mean is the transit

frequency:

2
P 70 T+ ) Wy =0, . (57)
The trigonometric forn of (56) is
u)l cos u)zt + u)z cos mlt wl sin u)zt - u)z sin u)lt
Z(t) = r + T X ,(58)
O * &y 17 %
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which indicates that the kernel in (53) actually involves Bessel

functions.(g) At A=0 , for k'k =kk cos ¢ ,
~ ~ ~0 o
azk 'k
o~t ~o 2
e = exp a95 Z(t) Eo
' @
= exp a kko T cos (wzt + 9) + T o cos (wlt - @)
1 2 1 2
o, \ \ i(m-n)g i(no.)1 + nub)t
Z I (a kk 17 —) In(a kk -—+——)e e .
W) + o, e 0w +uw,

(59)

Introducing the orbit into (53) reduces the integral equation to

2,2 -Ka o
o e 2 5%
E(’E’S) = 7_2—2‘ € 25 e ‘/—H(’E’}f‘oasat)
s + kec
2
aBE ZvE“ d (koa )
e ’E(k ,8) o . (60)

where

dt 2 dt ~0 e ~ dt

2
z Z, 2 dz
H(k,K ,s, t)—(ck-vstk)k—d +s<—dz v Zya k—d“> (61)
dt

is merely linear in k
~0
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The above analysis iilustrates the method of arriving at the
integral equation governing an inhomogeneous magnetoplasma and the forms
which that equation can take. The numerical analysis which remains to
be carried out on the equation to extract the dispersion relation from
the eigenvalues involves computations on only well-behaved kernels.
While‘the final numerical processing of the equations to reveal the
Wave supporting and stability properties of the plasma here considered
is beyond the scope of this expository work, a few general remarks on
the character of the integral equations may be in order.

Several distinct but equivalent forms of the final integral
equation have been presented. The kernel may be Gaussian, as in (51),
or essentially exponential, as in (60), or a superposition of Bessel
functions, as when the expansion (59) is substituted into (60). The
choice permitted by the commutativity of the integral operator and
the Laplace transformation in any of these forms provides further
latitude in the selection of the equation to be analyzed numerically.
For example, in (60), the Laplace transformation operates on the time
function indicated, which involves H(k k »S,t), whose Laplace transform
is trivially deduced from (55), modified by what is purely an exponential
function of t if (59) is introduced into (60). In the absence of

2
the factor exp (- d klvztz) » these exponentials would result in
merely a shift in the frequency domain, with the Laplace transform of
H evaluated at [s - i(n w; +m wz) - The effect of the exponential

involving the axial wave vector k is to introduce a Gaussian factor
in the transformation, leading to Ehe familiar error function, or plasma
dispersion function,(lo) and to Landau damping.

The connection to the physical system is wade through the factor
(w /w ) 1in (60), which plays the role of the eigenvalue »f the integral
equation but effectively relates the parameters s and k , thereby
expressing the dispersion relation. The stability of the equilibrium
state is determined by those locations of s in the complex plane

which permit the eigenvalue to be real and positive,
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The two-dimensional character of the integral equations can be
overcome in this case by taking advantage of the symmetry of the column
to eliminate the azimuthal integration. By use of (59), this reduces
the double summation to a single one, &8 well as leaving only a one-
dimensional integration over the radial wave number ko , suitable for
digital computation.

Various approximutions of both a mathematical and physical nature
may be imposed on the equations. The common quasistatic approximation
may be introduced by formally letting ¢+ o . 1In (60), this reduces
H(E,Eo,s,t)/(sz + k2c2) to QE'E/kZ)dZ/dt and considerably simplifies
the equation. Other simplifications are effected by selecting certain
directions of wave propagation and polarization with respect to the
magnetic field, particularly k = O . The combined case is treated
more thoroughly in the Appendix?

For a mildly inhomogeneous and warm plasma, the transit frequency
Wg is low and the effective radius a, is large. Suitable Taylor
expansions of the kernels then permit the determination of at least the
first-order deviations from the homogeneous case. It is already clear
from (55-59) that to the very lowest order, the cyclotron frejuency
and its harmonics are replaced by the two frequencies W, Wy and all

their combination frequencies; , Which

2 1
is small for low transit frequencies. Beyond that, approximate results

differs from Weg by o

are obtainable by noting that the Gaussian factor in (47) becomes
sharply peaked as a~® . A Taylor expansion of .9950) about
k =k yields

~NO A

2

1 °¢ ;
v(k) = a(k) + —= —= 4 ... . (62
W a2

When this is introduced into (51), there results a differential equation
as an approximation to the integral equation.

Finally, it may be surmised from a qualitative examination of the
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integral equations with Gaussjan kernels that whereas plane wave solutions
of the form 6(5 - -Es) are appropriate in the limiting infinite,
homogeneous case, the solutions for g(}\g) will in the general case
involve a spectrum of k vectors, sharply peaked about some signal

wave vector Es . The dispersion relation then relates the signal
frequency to this central vector of the wave packet, which is however

comprised of a broadened spectrum of 5 vectors.
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VII. CONCLUSIONS

The self-consistent field problem for a class of anisotropic,

inhomogeneous particle distributions has been reduced to that of solving ot

Y

an integral equation with a well-behaved kernel. Tractability has been
achieved mainly by considering a class of systems for: which the equili-
brium particle orbits can be simply described analytically. In partic-
ular, systems whose dynamics correspond to small deviations from
generziized harmonic oscillation have been analyzed. The particle
propagator then has the form exp Yt , making it relatively simple to
evaluate and accumulate the perturbations along the orbit.

The approach can evidently be generalized to other systems with
known and simply expressed unperturbed particle orbits. A rather
direct generalization might be to certain time-varying systems, in which
the propagator has the form exp rt Y(T) dT , provided the acceleration
matrix Y(t) commutes with its integral. A more sweeping generalization
might be made to orbit equations quadratic in the phase, rather than
merely linear. The orbit then satisfies a Riccati equation and the
systems so described admit ambipolar fields more general than thcse
considered herein.

Simple particle orbits permit simple recipes for the evolution of
an arbitrary initial particle distribution function in response to
arbitrary perturbations, The relevant physical quantities are, however,
various moments of the distribution, or other expectation values. Their
extraction by integration over velocity space is not only cumbersome
but complicated by classes of particles whose orbits are in resonance
with the propagation of disturbances. These difficulties are avoided
by describing the system at the outset by its spectrum in inverse phase
space. This spectrum is the characteristic function of the distribution,
or the expectation value of exp 18-¢ » and exhibits all the moments
by its behavior in the immediate vicinity of the origin of inverse phase

space.
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The perturbation of the spectrum is expressed in terms of the
Fourier-Laplace transform of the perturbation, which is algebraically
related to the sources of the electromagnetic fields, which are in
turn given directly by the perturbed spectrum. The system of equations
is thus clcsed self-consistently through an integral equation whose
kernel is essentially the unperturbed spectrum evaluated along the
orbit in inverse phase space. The equation admits arbitrary combinations
of equilibrium spectra and the associated harmonic oscillator force
fields and involves well-behaved kernels,well-suited for final numerical
analysis.

Trhe case of a Gaussian-Maxwellian plasma has been treated in greater
detail, by way of illustration. The plasma configurations conforming
to the exp (- % @ R 6) spectrum have not been exhausted herein. One
which requires no ambipolar electric field to maintain its density

profile is a column described transversely by

I -wX
2
R, =a . (63)
4
wX ww,

This has a Gaussian radial profile with effective radius a , a
Maxwellian velocity distribution of temperature T = m azm(mc -w
and an azimuthal drift corresponding to rotation at the rate ¢ about

(11)

the axis of the column, Except for diamagnetic effects of the
azimuthal drift current, this column is in equilibrium in an axial
magnetic field specified by the cyclotron frequency Wy The foregoing
analysis applies to this configuration, with R replaced by (63),

va =0, va = wcx . It may also be noted here that displacements
through X, and drifts at velocity xb can be simply inco?porated into

the inverse phase space spectra, through a phase factor exp 10'¢°
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The illustrative example presented here affords an opportunity to
formulate integral equations for a plasma in which temperature, anisotropy,
inhomogeneity, particle transport, and ambipolar fields are all to be
accounted for. There appears to be no insurmountable obstacle, other
than increased complexity, to generalizing the formalism to include

collisions and relativistic effects.
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APPENDIX

TRANSVERSE OSCILLATIONS OF MAGNETOPLASMA COLUMN

Under the quasistatic approximation, the special case of a self-
consistent, azimuthally symmetric transverse field pattern, which may
represent the cutoff condition for axial propagation along the Gaussian-
Maxwellian magnetoplasma column, is sufficiently simple to analyze
quite thoroughly. With reference to (52,60,61), the conditions are
expressed by ¢~ o , k =0, ’g(’l\(‘,s) = _gh(u,s) , Where n is a unit
vector along k and u"= kae . It then suffices toset A =0 , so
that the orbit is given by ’lst = ’l\(‘z(t) and the integral equation reduces
to

- % ¢ - % ui uu _nzZn 2
o~ ~0 du

e d e o

2
w
h(u,s) = ;-g--— L L | &¥— e h(u_,8)—- (A-1)
e

u ~s dt u
o

Choosing polar coordinates with polar axis along n and azimuth defined

by B, = exp (¢x)g , the azimuthal integration becomes, using (56),

27 uuogz'go 7 w w,
a0 _ [* ! ] % dg
j; e T5 = s exp (uu_ [‘Ds cos(¢ wlt) + g cos(¢ + wzt)])zﬂ
= I (u(t)u) , (A-2)
o o
where
2 2 2 2
0 (t) = (ml + Zwlwz cos w3t + wz)/ws ) g T W) R Wy - (A-3)
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Consequently, the integral equation collapses to

_l 2 _12
2 f 2 o
h(u,s) = A(e Ju) lh(d/dt) [ e Io(uQ(t)uo) h(uo,s)duo ,
(A-4)
2, 2
where A = wp/we is the eigenvalue.
By use of the multiplication theorem for Bessel functions,(lz) it

1s possible to reduce the kernel of this equation to degenerate form.,

Since

® 2 2 m
i (Nu -1) m
Io(ufuo) = _—__ET_T_—_ uoIm(uo) i (A-5)
2 m!
m=
the equation is equivalent to
204
2 ®
2 2 m .
_ ., e d (Q'u 1)
h(u,s) = A ___G—_—'Es It » ) Hm(s) , (A-6)
m'
m=0
where
-1 .2
3 U
Hm(s) = e Im(u) umh(u,s)du g (A-7)

The degeneracy now permits the reduction of the integral equation to an

equivalent infinite set of simultaneous equations of the form

H (s) = xz G, (s) H (s) , (A-8)
m=1
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with

™ 2

1 -u sl d 22 m
_[ e In(u)u gs I (Qu -1)du . (A-9)

G (8) =
- 2m m'

These matrix elements may be evaluated explicitly, by virtue of the
relations

2
p We
k
823 (vt T () . o
s
p=1 q_l +iq U.)3
and, in terms of Laguerre polynomials,
. 2 l
o -1 n+2k-1 4
_ (k-1)! n 1
_ f e I (wu du= o e L (- . (A1)
(o} 2
Thus,
1/4 m n-k LP (_l v p 2
G (s) = & 2 (-1) Le1¢” 3 z k -1)P2 )'TT _ W
nm' 0 T Cnem (m-K) | 2k P P’ 2 22 )
k=1 p=1 q=1 \8 + q Wq
(A-12)
and the resonance condition is
det (I - AG) =0 , (A-13)
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which relates the complex frequency s to the plasma frequency
2 2,1/2
3 = (wce + 4me)

replace the cyclotron harmonics as the significant frequencies.

in ) = mi/wz . Clearly, the harmonics of w

= 38/ =
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RESPONSE TO PERTURBATIONS
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Fig. 1 - Comparison of calculation of response to perturbations
in (B,t) , (6,t) , and (0,8) spaces.
L ]
»

- 40 -




EVOLUTION OF INTEGRAL EQUATION
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Fig. 2 - Evolution of self-consistent equations for spectrum
and field perturbations.
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Electron distribution and spectrum
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Fig. 3 - The Gaussian-Maxwellian magnetoplasma column.
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